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Abstract. Polar regions are characterized by their remoteness, making measurements challenging, but an improved knowledge

of clouds and radiation is necessary to understand polar climate change. Infrared radiance spectrometers can operate continu-

ously from the surface and have low power requirements relative to active sensors. Here we explore the feasibility of retrieving

cloud height with an infrared spectrometer that would be designed for use in remote locations, for single-layer, mixed-phase

polar clouds, using the CO2 slicing/sorting and the Minimum Local Emissivity Variance (MLEV) methods. In the absence5

of imposed errors and for clouds with optical depths greater than ∼0.3, cloud height retrievals from simulated spectra using

CO2 slicing/sorting and MLEV are found to have roughly equivalent, high accuracies: at an instrument resolution of 0.5 cm−1,

mean biases are found to be ∼0.2 km for low clouds (bases below 2 km) and -0.2 km for medium-to-high clouds (hereafter

“high clouds”). Accuracy is found to decrease with decreasing cloud signal and increasing cloud height (independent of sig-

nal). Accuracy also decreases with coarsening resolution and becomes worse overall for MLEV than for CO2 slicing/sorting;10

however, the two methods have differing sensitivity to different sources of error, suggesting an approach that combines them.

In the presence of errors, the dependence of retrieval accuracy on resolution is weakened. Further, errors have a small effect on

retrievals of low clouds but a large effect on high clouds. Expected errors in the atmospheric state indicate that at a resolution

of 0.5 cm−1, instrument noise level and bias of 0.1 mW/(m2 sr cm−1) would permit a retrieval accuracy of -2 ± 2 km for high

clouds and ∼0.2 ± 0.5 km for low clouds, for both methods. This study highlights the sensitivity of surface-based infrared15

spectrometers to low clouds prevalent in polar regions.

1 Introduction

The interactions between clouds and radiation are important drivers of variability in the climate system. At high latitudes,

unique processes are at work, with important implications for climate. For example, in the Arctic, the solar and infrared effects

of clouds influence interannual variability in sea ice through modulation of the ice-albedo, water vapor, and cloud feedbacks20

(Choi et al., 2014; Francis and Hunter, 2007; Kay et al., 2008; Schweiger et al., 2008a, b). Cloud heights may be changing

in the Arctic in response to changes in sea ice (Francis and Hunter, 2007; Schweiger et al., 2008a), thereby modifying the
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surface energy budget and perturbing feedbacks. In the Antarctic, clouds have large impacts on ice/snow mass balance and

the heat and freshwater budgets of the Southern Ocean, which in turn affect global ocean circulation and the global carbon

cycle (Bromwich et al., 2012). These impacts highlight the importance of understanding responses of clouds to changes in the

system. Measurements of cloud properties with high spatial and temporal resolution are critical for this work, but currently

data is sparse at high latitudes.5

Measurements of cloud properties are also needed to validate models of the Arctic and Antarctic atmospheres and to improve

the parameterizations they rely on (Hines et al., 2004; Town et al., 2007; Wesslen et al., 2014). Large errors in atmospheric

radiative fluxes and cloud radiative forcing are found in reanalysis products (Walsh et al., 2009; Cox et al., 2012; Wesslen

et al., 2014) and climate models (Cesana and Chepfer, 2013; Pithan and Mauritsen, 2014; Pithan et al., 2014). These er-

rors have been attributed to errors in optical properties, vertical profiles, and cloud base heights in the Arctic (Walsh et al.,10

2009). Cloud height, which influences cloud temperature, has a large impact on the cloud infrared radiation and thermody-

namic phase; Wesslen et al. (2014) find that ERA-Interim cloud base height is often too high in the Arctic. Spatially resolved

measurements of cloud properties at high latitudes come primarily from satellite platforms (e.g., Francis and Hunter, 2007;

Schweiger et al., 2008a; Wang and Key, 2003, 2005). Active instruments, such as CloudSat and the Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observation (CALIPSO) allow retrievals of cloud height and other properties (see, e.g. Bromwich15

et al., 2012; Cesana et al., 2012; Verlinden et al., 2011). However, lidar instruments have a small footprint, requiring the use of

monthly or seasonal averaging. Passive instruments that measure upwelling infrared radiances (e.g. the Moderate Resolution

Imaging Spectroradiometer (MODIS), the Infrared Interferometer Spectrometer (IRIS), the Infrared Atmospheric Sounding

Interferometer (IASI), and the Crosstrack Infrared Sounder (CrIS)) have large footprints, enabling global coverage on daily

timescales, and can be used to retrieve cloud properties. These instruments have the advantage that the cloud property retrievals20

are derived from, and are thus directly tied to, their radiative effect. However, passive instruments aboard satellite platforms

are best suited for viewing the tops of clouds and have less sensitivity to the important region of the atmosphere that affects

the surface energy budget, that is, between the surface and the base of the cloud. Because of this, satellite-based measurements

must be complemented by surface-based measurements for a complete understanding of the atmosphere.

Atmospheric observatories that are capable of surface-based remote sensing of cloud properties exist in the Arctic at a25

small number of coastal and interior land stations, most notably Barrow, Alaska (Stamnes et al., 1999), Eureka, Canada, Ny-

Ålesund, Svalbard and Summit, Greenland (Shupe et al., 2013). In addition, a number of brief field campaigns with similar

capabilities have been conducted over the Arctic Ocean, including the Surface Heat Budget of the Arctic (SHEBA) campaign

(Uttal et al., 2002), the Mixed-Phase Arctic Cloud Experiment (MPACE; Verlinde et al., 2007), the Arctic Summer Cloud

Ocean Study (ASCOS; Wesslen et al., 2014), and the Norwegian Young Sea Ice (N-ICE) experiment. In the Antarctic, field30

stations are sparsely located, principally on the coast, and have fewer instruments for measuring cloud properties than in the

Arctic. The ARM mobile facility (AMF) is deploying in McMurdo for a year from November 2015 to 2017 and long-term lidar

measurements are made at Amundsen-Scott South Pole Station. Nevertheless, there remains a dearth of surface-based remote

sensors in the Antarctic. The lack of instrumentation at both poles is due largely to the expense and logistical challenge of

deploying instruments in these remote regions. A lack of autonomous sensors prevents collection of data at locations other than35
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established stations. New instruments are needed that address these challenges, in particular designs intended for the purposes

of both climate monitoring and process studies representing a more comprehensive range of regional high-latitude climates.

Surface-based Fourier transform infrared (FTIR) spectrometers are proven instruments both in the Antarctic (e.g. Mahesh

et al., 2001a, b; Rowe et al., 2008) and the Arctic (e.g. Rathke et al., 2002; Mariani et al., 2013; Cox et al., 2014). Cloud

height is required to determine cloud temperature or retrieve cloud optical and microphysical properties. Surface-based FTIR5

spectrometers are currently operated at large, well-instrumented observatories, and therefore retrievals of cloud properties from

downwelling radiances typically do not include cloud height, but rather use cloud height measured by collocated lidars. How-

ever, a legacy of stand-alone passive infrared remote sensors have resulted in developments of methods for retrieving cloud

height primarily from satellite instruments measuring infrared radiances (e.g. Smith and Platt, 1978; Minnis et al., 2001; Kahn

et al., 2007), but also a few ground-based studies using downwelling infrared radiances (Mahesh et al., 2001a). FTIR technol-10

ogy is passive and can be relatively low-cost, with energy requirements that are considerably lower than active instrumentation

such as lidar (e.g. Christensen et al., 2004). Furthermore, passive infrared measurements are well-suited for observing clouds

in dry climates such as the polar regions (Mahesh et al., 2001a; Neshyba and Rathke, 2003; Cox et al., 2014). Thus, portable,

autonomous infrared spectrometers are a viable solution for acquiring long-term, high temporal resolution, surface-based mea-

surements of clouds and the atmospheric state from a more spatially diverse and comprehensive sample of the high latitudes.15

Since such an autonomous system would necessitate independence from other collocated, ancillary measurements, such as

lidar, evaluating the requirements for accurate cloud height retrievals is a first step towards development of such a system.

Here we evaluate the potential for using infrared spectrometers for retrieving cloud base height, specifically testing the un-

certainties associated with instrument designs suited for autonomous deployment. In particular, noise characteristics depend

on instrument resolution (which limits the instrument throughput), and hence noise decreases as resolution becomes coarser.20

Thus we also test the effects of instrument resolution on the accuracy of cloud height retrievals. To isolate uncertainties asso-

ciated with methodology and instrument characteristics, our analysis makes use of a simulated data set (Cox et al., 2016) that

permits control over sources of error and maintains a fixed and known standard for comparison. Three established methods

for retrieving cloud height using spectrally-resolved infrared instruments are the minimum local emissivity variance (MLEV)

technique (Huang et al., 2004), CO2 slicing (e.g. Menzel et al., 1983; Mahesh et al., 2001a) and CO2 slicing/sorting (Holz et al.,25

2006). Although these have been compared for satellite-based retrievals from upwelling radiances (Holz et al., 2006), they have

not been compared for retrievals from downwelling radiances or with consideration of variability in noise-characteristics and

spectral sampling between different types of spectrometers, which are key engineering barriers to developing an autonomous

surface-based system. Here we evaluate and compare these techniques to determine which is most accurate for surface-based

retrievals of downwelling radiance in the Arctic and to constrain the instrument requirements for providing cloud height infor-30

mation from an infrared spectrometer that is designed for autonomous deployment.
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2 Atmospheric State and Simulated Radiances

In order to assess the cloud height retrievals, simulated cloudy-sky radiances are used. A wide variety of simulations were

created, described in detail by Cox et al. (2016, submitted), and summarized here. Line-by-line, or perfect resolution spectra

were created for a spectral range of 50 to 3000 cm−1 (spectra in the range 500 to 950 cm−1 are used in this work), using the Line

by Line Radiative Transfer Model (LBLRTM); (Clough et al., 2005) and the DIScrete Ordinates Radiative Transfer (DISORT)5

model (Stamnes et al., 1988). This dataset is designed to be of use for feasibility studies of retrievals such as the present study.

The simulated dataset allows tests of retrieval accuracy to focus on a few variables, while constraining others. To this end,

the cloud and atmosphere modeling was simplistic: only single-layer clouds were included and a plane-parallel atmosphere

was assumed. Furthermore, cases with ice modeled as spheres are used here, and all clouds are vertically homogenous. This

allows the study to focus on retrieval accuracy with varying atmospheric profiles, precipitable water vapor amounts as well as10

varying cloud heights, temperatures, optical depths, ice fractions, and effective radii. A variety of typical Arctic atmospheres

are represented in the data set, including conditions for all four seasons and a variety of cloud types. Because of the high

incidence of mixed phase clouds in polar regions, both single phase and mixed phase clouds were included (mixed phase

clouds were modeled as externally mixed).

Cloud base heights range from 0 to 7 km with temperatures ranging from 225 to 283 K. Figure 1, reproduced from Cox15

et al. (2016), shows the distributions of cloud height, thickness, and temperature. To test the limits of cloud property retrievals,

a few extreme and/or less likely cases were included. For example, the database includes a few cases of clouds with optical

depths that are extremely low (visible optical depths below 0.2) and includes high clouds that are optically thick as well as

thin. Precipitable water vapor (PWV) amounts span the range typical of the polar regions, but some cases are included that are

quite high for the polar regions (mean = 1 cm, standard deviation = 0.72 cm, maximum = 3 cm, minimum = 0.2 cm). Overall20

most of the atmospheric and cloud properties in the model are intended to be realistic cases and, therefore, good candidates for

cloud height retrievals. Additionally, the distributions are intended to be realistic for the Arctic; cloud heights are typically low

with fewer high clouds.

The perfect resolution spectra were convolved with sinc functions to create sets of simulated cloudy-sky radiances at resolu-

tions of 0.1, 0.5, 1, 2, 4, and 8 cm−1. These simulated cloudy-sky radiances serve as the “observations”, Robs, used to test the25

cloud height retrievals.

3 Cloud height retrieval methods

In this section we introduce the established methods for retrieving cloud height from infrared radiances: the minimum local

emissivity variance (MLEV) technique (Huang et al., 2004) and CO2 slicing (e.g. Smith and Platt, 1978; Mahesh et al., 2001a;

Holz et al., 2006) and then expand upon these by developing hybrid methodologies suitable for surface-based observations of30

downwelling radiances in polar regions. We first derive the radiative transfer equations central to the methodological theory.

(The derivation is similar to but differs slightly in symbols and development from those of Mahesh et al. (2001a), Holz et al.

(2006), and Huang et al. (2004) in order to illustrate some key points.) Next we describe MLEV, followed by the CO2 slicing
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method as applied by Mahesh et al. (2001a) and the CO2 slicing/sorting method of Holz et al. (2006). MLEV and CO2 slicing

typically use radiances from within 710 to 950 cm−1 and ignore scattering. Holz et al. (2006) implement the CO2 slicing

differently than Mahesh et al. and also introduce “CO2 sorting,” whereby wavenumbers are selected after sorting them roughly

according to their atmospheric transmittance. Finally, we describe modifications made to the MLEV and CO2 slicing and

sorting methods made in this work. For MLEV, the method is modified for downwelling radiances, while for CO2 slicing and5

sorting, the best aspects of the methods of Holz et al. (2006) and Mahesh et al. (2001a) are combined, based on experimentation

with retrievals from the dataset of simulated Arctic downwelling radiances. The retrievals all assume a zenith view.

3.1 Cloud Emissivity

Both MLEV and CO2 slicing depend on approximations involving the cloud emissivity over the wavenumber range of interest:

MLEV assumes it is smoothly-varying with wavenumber, while CO2 slicing traditionally assumes it is constant. Ignoring10

scattering, the observed downwelling radiance for a zenith view, Robs, is

Robs ≈
TOA∫

0

B(T (z))
dt

dz
dz, (1)

where the parentheses represent functionality, B is the Planck function, T is temperature, z is height, t is the transmittance

from the surface to z, and the integration is from the surface (height of 0) to the top of atmosphere (TOA). The integral can be

broken up into contributions from the surface to the cloud base (base), from cloud base to cloud top (top), and from cloud top15

to the TOA. The radiance contribution from the surface to the cloud base (Rc) is unaffected by the presence of the cloud.

Robs ≈Rc +

top∫

base

B(T (z))
dt

dz
dz+

TOA∫

top

B(T (z))
dt

dz
dz. (2)

If we assume that the cloud is in an infinitely thin layer (zbase = ztop) devoid of gases (i.e. gaseous transmittance within the

cloud equals unity), a number of simplifications are possible. We let B(T (zbase)) =B(T (ztop)) =Bc, the Planck function at

the cloud temperature. The first integral on the right hand side can then be solved to give Bc[1− tcld]tc where tc is the gaseous20

transmittance from the surface to the cloud base and tcld is the cloud transmittance. We have

Robs ≈Rc +Bctc[1− tcld] + tcld

TOA∫

top

B(T (z))
dt′

dz
dz (3)

where t′ is the cloud-free transmittance from the surface to height z. The final integral is the radiance contribution from above

the cloud that makes it through the gaseous atmosphere below the cloud; it is independent of the cloud presence and is equal

to Rclr−Rc. Assuming local thermodynamic equilibrium (and again ignoring scattering), the cloud absorptivity equals the25

emissivity, so that (1− tcld) = ε. We can ignore the cloud fraction if the instrument field of view is small, but the emissivity

can also be thought of as an effective emissivity that takes into account any patchiness in the cloud within the field of view.

Robs ≈Rc + εBctc + [Rclr−Rc]tcld. (4)
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Substituting in (1 - ε ) for tcld and simplifying gives

Robs ≈Rclr + ε[Bctc +Rc−Rclr]. (5)

The equation can be rearranged to solve for the emissivity,

ε≈ Robs−Rclr

Bctc +Rc−Rclr
. (6)

Eq. (6) is comparable to Eq. (4) of Huang et al. (2004) and Eq. (2) of Holz et al. (2006), where Rcld =Bctc +Rc. The5

equation in the form shown here demonstrates that cloud height and effective emissivity are very closely connected, making

cloud height retrievals challenging. Bc depends on cloud temperature, which in turn depends on cloud height, and tc and Rc

both depend on cloud height. Thus errors in cloud height can be largely accounted for by errors in emissivity.

The right hand side of Eq. (6) depends on the observed radiance, Robs, and quantities that can be calculated based on

knowledge of the cloud-free atmospheric state. In this work, Rclr and Rc are calculated from atmospheric profiles of height,10

pressure, temperature, and trace gas amounts, using radiative transfer calculations as in the line by line radiative transfer model

(LBLRTM; Clough et al., 1992). Rclr need only be calculated once, whereas tc and Rc are calculated for each potential cloud

height. Rclr, tc and Rc all include gaseous contributions and therefore vary rapidly with frequency. By contrast, ε and Bc

depend on the cloud properties and should vary slowly with frequency.

To summarize the model assumptions, they include modeling the atmosphere as a plane-parallel, layered atmosphere in15

local thermodynamic equilibrium, ignoring scattering, assuming the cloud is in an infinitesimally thin layer devoid of gases,

and assuming that the emissivity is slowly-varying or constant with frequency over ∼710-950 cm−1.

3.2 MLEV

To find the MLEV, ε is calculated for each potential cloud height, c, for wavenumbers between limits ν1 and ν2. The “local”

emissivity variance (LEV) is then calculated according to Eq. (5) of Huang et al. (2004),20

LEVc =
ν2∑

ν1

(εc,ν −〈εc,ν〉)2, (7)

where this is defined as the local emissivity variance because the mean of ε is not taken over the entire spectral range ν1 to ν2,

but rather over a small wavenumber region (∆ν) about ν,

〈ε(c,ν)〉=
1

∆ν

ν+∆ν/2∑

ν−∆ν/2

εc,ν , (8)

The summation in Eq. (7) is over a wavenumber range that includes water vapor and CO2 lines. Huang et al. (2004) use ν125

= 750 cm−1 and ν2 = 950 cm−1 in Eq. (7) and use an interval of ∆ν = 5 cm−1 in Eq. (8). When Eq. (7) is calculated with

an incorrect height, errors in the calculated values of tc and Rc result in errors in the calculated effective emissivity that vary

rapidly with frequency due to the dependence of tc and Rc on trace gases, causing the LEV to be large. Thus the correct
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cloud height is retrieved as that corresponding to the minimum LEV, or MLEV. This technique relies on accurate knowledge

of carbon dioxide and water vapor profiles; uncertainties in the water vapor profile are thus an importance source of error.

In this work, the MLEV method is performed similarly to that of Huang et al. (2004), but for downwelling radiances and

for a variety of different spectral resolutions. Furthermore, all values are calculated for the desired instrument resolution. This

is done by convolving Rclr, tc, and Rc with a sinc funciton with the desired linewidth. As in Huang et al. (2004), we use ν15

= 750 and ν2 = 950 cm−1. For resolutions of 0.5 and 1 cm−1, we use an interval of ∆ν = 5 cm−1 in Eq. (8) (corresponding

to averaging over 10 or 5 spectral points, respectively), like Huang et al. (2004). However, for a resolution of 2 cm−1, we

use ∆ν = 10 cm−1 (average over 5 points), and for resolutions of 4 and 8 cm−1, we use ∆ν = 24 cm−1 (average over 6 or 3

points, respectively). Small variations about these values were found to give similar results.

The steps for MLEV are as follows:10

1. Choose model heights (layer boundaries) for the model atmosphere. Calculate Rclr. Calculate Rc, Bc, and tc for each

model height for the clear-sky atmosphere based on best estimates of temperature, water vapor, and trace gas amounts.

2. Calculate the LEV (Eq. (6) - Eq. (8)) for each trial cloud height.

3. Find the height that corresponds to the MLEV.

3.3 CO2 slicing and sorting15

In Mahesh et al. (2001a), CO2 slicing makes use of the variation in the absorption coefficient of the CO2 band from ∼ 700 to

755 cm−1, where CO2 emission dominates. (Unlike H2O, CO2 is a well-mixed gas and thus can be estimated fairly accurately

from surface measurements.) Rearranging Eq. (5), including the wavenumber dependence explicitly, and dividing both sides

by the same quantities at a reference wavenumber, ν0, gives

Robs(ν)−Rclr(ν)
Robs(ν0)−Rclr(ν0)

=
ε(ν)[Bc(ν)tc(ν) +Rc(ν)−Rclr(ν)]

ε(ν0)[Bc(ν0)tc(ν0) +Rc(ν0)−Rclr(ν0)]
. (9)20

The value of ν is varied from ∼ 700 to 755 cm−1, while ν0 is chosen to be a wavenumber (∼ 812 cm−1) close to this spectral

region but where the absorption coefficient of CO2 is small enough (i.e. the transmittance is large enough) that the downwelling

radiance is sensitive to the entire atmospheric column. It is next assumed that the emissivity is constant from 700 to 812 cm−1,

so that the emissivity terms cancel.

Robs(ν)−Rclr(ν)
Robs(ν0)−Rclr(ν0)

=
Bc(ν)tc(ν) +Rc(ν)−Rclr(ν)

Bc(ν0)tc(ν0) +Rc(ν0)−Rclr(ν0)
. (10)25

The left hand side (LHS) of Eq. (10) is constant, while the right hand side (RHS) varies with assumed cloud height. Solutions

are found at each wavenumber where the RHS equals the LHS, giving a retrieved cloud height for each ν. If the RHS is not

equal to the LHS at any height, the solution is found where the magnitude of the difference (RHS-LHS) is smallest. Due to

model and measurement errors, retrieved cloud heights vary for different values of ν. (Note that Mahesh et al. retrieve cloud

base pressure, rather than height; in this work, cloud base height is retrieved). Mahesh et al. take a weighted average of the30
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results obtained, where the weights are the change in the RHS with a change in the pressure at the cloud base, determined in

a 10 hPa interval centered about the retrieved cloud base pressure. This typically provides more weight to wavenumbers with

“e-folding” distances close to the cloud base.

Multiple solutions may exist at a given ν due to errors or due to the presence of near-surface temperature inversions, which

are common in the polar regions. Due to a temperature inversion, the cloud temperature may exist at more than one height.5

Because the retrieval methodology relies to a large extent on sensitivity to cloud temperature (rather than height), choosing

between heights having the same temperature can be challenging. To do this, the best result is determined for each set of

solutions (e.g. the set below the inversion and the set above the inversion). Then, to choose between sets of cloud bases above

and below a temperature inversion, Mahesh et al. perform a second step using “short-sighted” wavenumbers. Short-sighted

wavenumbers are those with low transmittances, and are sensitive to low clouds but not high clouds. Mahesh et al. find the10

percentage of short-sighted wavenumbers at which a cloud is detected. If this is large, the cloud base is assumed to be within

the inversion, and if it is small, the cloud base is assumed to be above the inversion.

The CO2 slicing/sorting method of Holz et al. (2006) refines the CO2 slicing technique by selecting a subset of wavenum-

bers within 650 to 800 cm−1 to use for the retrieval. Wavenumbers are sorted roughly according to the gaseous transmittance.

For downwelling radiances, the transmittance is defined from the surface up to some level in the atmosphere. As the trans-15

mittance increases with (sorted) wavenumber, the effective emitting height becomes higher. Holz et al. (2006) use clear-sky

brightness temperature as a proxy for clear-sky transmittance. (As will be discussed, this is a reasonable proxy if temperatures

decrease with height in the troposphere, which is not always the case for this work.) First, clear-sky brightness temperatures

are sorted. The sorted index is then applied to cloudy-sky brightness temperatures. Sorted clear-sky and cloudy-sky brightness

temperatures are then compared to determine at which wavenumbers they differ. Sorted wavenumbers are only used in the20

retrieval if the clear-sky and cloudy-sky brightness temperatures differ. This sets the lower limit in the gaseous transmittance

such that wavenumbers that have little sensitivity to the cloud are excluded from the cloud height determination. An upper limit

in gaseous transmittance is also selected, based on where the slope of the brightness temperature decreases. Finally, Holz et al.

found results were improved if only wavenumbers between strong CO2 absorption lines were used.

Once the subset of wavenumbers to be used has been determined, a unique cloud height is determined for each wavenumber25

in a similar manner as for CO2 slicing, but using a different formulation, which is designed for upwelling radiances (see Eq.

(1) of Holz et al. (Holz et al., 2006)).

After a unique cloud height has been found for each wavenumber, the method for determining the best overall cloud height

also differs from that of Mahesh et al. (2001a). Instead of weighting the cloud heights, an error function is computed for each

retrieved cloud height, c.30

Err =
∑

ν′

Robs(ν)−Rclr(ν)− εc(ν0)[Bc(ν)tc(ν) +Rc(ν)−Rclr(ν)]. (11)

The sum is over the selected wavenumbers, ν′. The optimal cloud height is chosen as that which minimizes this equation.

This work uses aspects of the CO2 slicing method of Mahesh et al. as well as the CO2 slicing/sorting method of Holz et al.

(2006) and additional adaptations for computational efficiency and for cloud retrievals specifically from downwelling radiance
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measurements made in the polar regions. Based on detailed sensitivity studies and trial-and-error, the following modifications

were made.

CO2 sorting is applied slightly differently in this work. The use of brightness temperature as a proxy for transmittance, as

in Holz et al. (2006), is not a good approximation in the polar regions. While gaseous transmittance, which is defined relative

to the surface, always decreases with height, clear-sky brightness temperatures do not always decrease with height in the polar5

regions; they can increase with height within near-surface temperature inversions, which are common in the polar regions. Thus

in our method, wavenumbers are sorted by gaseous transmittance from the surface to the TOA, tTOA. The gaseous transmittances

are calculated for each measured radiance spectrum (at the desired resolution) based on the clear-sky atmospheric state and

then sorted.

Another difference in our application of sorting involves setting the threshold for choosing the wavenumbers to use. Within10

the spectral range of 700 to 750 cm−1, at some wavenumbers CO2 transmits so little radiance that there is little sensitivity

to cloud. At these wavenumbers, Robs−Rclr is expected to be on the order of the uncertainty. Thus a threshold is needed for

which there is adequate cloud signal for the retrieval. A threshold of 0.5 RU is used here (1 RU, or radiance unit, is defined

to be 1 mW / [m2 sr cm−1]). The gaseous transmittance tthresh is found at which the magnitude of Robs−Rclr = 0.5 RU, and

wavenumbers (ν) are selected that correspond to tTOA ≥ tthresh. A final difference is that an upper wavenumber cutoff of 75515

cm−1 is used, rather than estimating a cut-off based on the slope of the brightness temperature; the retrieval is not sensitive to

the choice of upper wavenumber.

Like Mahesh et al., we use short-sighted wavenumbers to distinguish between multiple solutions. However, whereas Ma-

hesh et al. found that wavenumbers between 670 and 700 cm−1 are sensitive to clouds within the inversion, this wavenumber

range was found to have negligible sensitivity to clouds at any height for the atmospheric profiles used here. Instead, the best20

wavenumber range for the atmospheric profiles used here is found to be 705 to 715 cm−1. In addition, sensitivity studies indi-

cate that a better method than that employed by Mahesh et al. is to once more find the solution that minimizes the error function

given in Eq. (4), this time summing over the short-sighted wavenumbers (step 10 below). These short-sighted wavenumbers are

where the transmittance is low, and thus generally represent wavenumbers that were excluded in calculating the error function

previously. The steps of the CO2 slicing/sorting method used in this work are summarized as follows:25

1. Choose model heights (layer boundaries) for the model atmosphere. Calculate Rclr. Calculate Rc, Bc, and tc for each

model height for the clear-sky atmosphere based on best estimates of temperature, water vapor, and trace gas amounts.

2. Calculate the LHS of Eq. (10).

3. Calculate the RHS of Eq. (10) for each model height and for each wavenumber.

4. Use CO2 sorting to choose the best set of wavenumbers for the retrieval; these are typically between 720 and 755 cm−1.30

5. Find the height(s) at which the LHS and RHS agree best (interpolate to find where they cross or, if they never cross,

determine where the difference is a minimum) for each wavenumber selected by CO2 sorting.
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6. Calculate the emissivity at the reference wavenumber, εc(ν0), using Eq. (6), for each cloud height (c) retrieved. This

yields sets of cloud heights retrieved, comprised of one height for each selected wavenumber within each set, with corre-

sponding reference emissivities. For example, there might be a set of cloud heights retrieved (clower set(ν)) corresponding

to heights below the inversion and a set (chigher set(ν)) above the inversion.

7. Calculate the error function as in Eq. (11) for the height retrieved at the first wavenumber, c= clower set(ν = ν1), using5

the corresponding εc(ν0) and Bc(ν), tc(ν), and Rc(ν).

8. Repeat step 7 for each of the remaining selected wavenumbers (ν = ν2, etc). Find zc,lower set that corresponds to the

minimum error. This yields a single cloud height retrieval (cret, lower set).

9. Repeat 7 and 8 for the higher set of retrieved heights, yielding a single cloud height retrieval (cret, higher set).

10. To choose between cret, lower set and cret, higher set, calculate the error function again for each of them. However, this time10

use the short-sighted wavenumbers; these are typically between 705 to 715 cm−1.

4 Results

In this section we use the simulated spectra to compare the results of the MLEV and CO2 slicing/sorting methods as adapted

for this work against the “true” cloud base heights specified in the simulations. To understand how different hypothetical

instrument specifications and varying amounts of ancillary information affect the results, the comparisons are made with and15

without imposed errors (e.g., instrument noise and uncertainty in the water vapor profile) and as functions of instrument

resolution.

4.1 Cloud mask and retrieval capability

An important basic aspect of a cloud height retrieval algorithm is that it must be able to determine if there is a cloud present.

Figure 2a shows a scatter plot of cloud height retrieved using CO2 slicing/sorting vs. simulated cloud base-height. For these20

retrievals, no errors were imposed, so the only error present is model error. The spectral resolution is 0.5 cm−1. The points are

color-coded according to the cloud optical depth (in a real experiment, the optical depth will not be known). Cases with high

PWV( > 2.9 cm) are indicated in red boxes; these points will be discussed later. The true cloud bases are offset by a small

random factor so that the points are spread out slightly for better visibility; the discrete cloud base heights are evident for bases

between 2 and 7 km.25

Retrieved cloud base heights for clouds with very low optical depths (less than 0.5; red and orange points) stand out as having

larger retrieval errors. These points constitute clouds that are below the radiance detection threshold and therefore need to be

removed from the analysis. The cloud mask is set according to a threshold for a difference between measured and simulated

radiance; for the wavenumbers selected using CO2 sorting, a requirement that the root mean square (rms) difference between

observed and clear-sky radiances differ by at least 2.2 RU is found to remove most low-accuracy points, as shown in Fig. 2b.30
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All cases with cloud optical depths below 0.25 were removed and many of the clouds with optical depths below 0.5 were

removed.

Examining Fig. 2b, we see that retrieved cloud base is biased low for clouds above about 2 km (the mean bias is -0.93 km).

The bias gets worse, roughly, as clouds get thinner. This bias occurs in large part because the emissivity is assumed to be

constant with wavenumber, but actually varies slightly. For thinner clouds, the emissivity is typically larger at wavenumbers in5

the numerator of Eq. (9) than at the reference wavenumber (∼ 811 cm−1), in the denominator. Thus rather than cancelling out,

the factor ε(ν)/ε(ν0) is typically about 1.05 for high, thin clouds, causing a bias of about -0.9 km on average. To remove this

bias, Eq. (10) in step 3 is replaced with

Robs(ν)−Rclr(ν)
Robs(ν0)−Rclr(ν0)

= εc,rat(ν)
Bc(ν)tc(ν) +Rc(ν)−Rclr(ν)

Bc(ν0)tc(ν0) +Rc(ν0)−Rclr(ν0)
, (12)

where εc,rat(ν) is determined at each trial cloud height (c) as an estimate of the ratio of the emissivity at ν to the emissivity at ν0.10

For each trial height εc,rat(ν) is determined by first calculating the emissivity, εc(ν), according to Eq. (6). While εc(ν) should be

smooth, the observed value is highly variable due to errors. Errors are expected to be lowest where the signal is strongest. Thus

the next step is to select the wavenumbers where the signal is the strongest; for this a subset of the wavenumbers selected by

CO2 sorting is used. If fewer than 16 wavenumbers were selected by CO2 sorting, then no emissivity smoothing is attempted;

εc,rat(ν) is set to one; that is, Eq. (12) is abandoned in favor of Eq. (10). If at least 16 wavenumbers are selected by CO215

sorting, then the points with the highest signal are used (for a resolution of 0.1 cm−1, the ideal number appears to be about 90

to cover a sufficient portion of the spectral range, while for 0.5 cm−1 and up 30 points are sufficient). A straight line is fitted

to the emissivity at the selected wavenumbers, and its value is divided by εc(ν0) to get an equation for εc,rat for the selected

wavenumbers. This equation is used for all wavenumbers within the range of the first and last of the selected wavenumbers.

However, outside this range, εc,rat is set to 1 because the weakness of the signal prohibits obtaining an estimate of the emissivity20

that is better than the assumption εc(ν) = εc(ν0), and examination of the true emissivity indicates that it may not continue to

fall on the straight line determined by the fit at the selected wavenumbers.

Using a smooth, rather than constant, emissivity removes much of the low bias observed in Fig. 2b for clouds with bases

above 2 km, as shown in Fig. 2c.

Returning to cases with high PWV (red boxes in panel a), note that these occur for cloud base heights near 2 and 4 km. We25

see in panels c and d that these clouds are retrieved quite accurately. It is generally true that these higher-PWV cases can be

retrieved accurately even when errors are imposed, except for when large errors exist in PWV itself.

4.2 Comparison of CO2 slicing/sorting and MLEV

Fig. 2d shows the scatter plot for cloud heights retrieved using MLEV. Comparing Figs. 2c and d, we see that both CO2

slicing/sorting and MLEV are quite accurate for single-layer clouds in the absence of imposed errors. Fig. 3 shows histograms30

of error in retrieved cloud height, again for simulations with no imposed error and at a spectral resolution of 0.5 cm−1. Note

that the histograms are plotted with height on the vertical axis. For these and subsequent figures, we refer to low clouds as

clouds with bases below 2 km. Medium to high clouds (bases from 2 to 8 km) are referred to as high clouds for brevity. As
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shown in panels a and c, CO2 slicing/sorting has a lower standard deviation for low clouds, while MLEV is slightly more

accurate for high clouds (panels b and d).

In a real experiment, there are errors in the observed radiance (noise or bias) and in knowledge of the atmospheric state, most

notably the temperature and humidity profiles. To probe the effects of these sources of error, cloud heights are retrieved with

these errors imposed on the simulation of “observed” radiance (noise or bias) or on the temperature or water vapor profiles5

used in the retrieval.

Figures 4 and 5 are similar to Fig. 3 but include imposed error. For Fig. 4 a bias of 0.2 K is imposed in the temperature

profile used in the retrievals at all heights, while for Fig. 5, a bias of -10% at all heights is imposed in the water vapor profile

used in the retrieval. Positive biases in temperature or water vapor generally induce positive biases in simulated radiances and

thus are accounted for by negative biases in cloud emission. Since temperature generally decreases with increasing height, this10

generally corresponds to a high bias in retrieved cloud heights. The reverse is generally true for negative biases in temperature

and water vapor. For low clouds (cloud bases < 2 km) retrieved using CO2 slicing/sorting, the negative bias in water vapor

partially offsets the observed positive bias that is found in cases with no imposed error.

As Figs. 4 and 5 show, these errors affect high clouds much more than low clouds, for which retrievals remain quite accurate.

This is not surprising given that high clouds generally have a weaker signal due to the larger atmospheric column below, and the15

greater sensitivity to the atmospheric column means they are more strongly affected by errors in knowledge of the atmospheric

state.

Figures 4 and 5 also suggest that CO2 slicing/sorting is more strongly affected by errors in the temperature profile used in

the retrieval while MLEV is more strongly affected by errors in the water vapor profile. Detailed studies (Fig. 6) of a variety of

errors reveal that MLEV is more accurate in the presence of biases in the observed radiance, and biases in temperature, while20

CO2 slicing/sorting is more accurate in the presence of noise in the observed radiance and biases in water vapor. The panels

of Fig. 6 are scatter plots similar to Fig. 2, but both CO2 slicing/sorting (blue pluses) and MLEV (red dots) are plotted in each

panel. Error sources and amounts are given in the titles (the black dashed line is discussed in Sect. 5.2). Note that the effect of

a positive bias in observed cloudy-sky radiance is similar to that of a negative bias in simulated clear-sky radiance, and thus

similar to the effects of negative biases in temperature and humidity.25

Factors that complicate how errors affect retrievals using CO2 slicing/sorting include errors in the fitting of the emissivity to

a smooth function and changes in the strength of the apparent cloud signal, which can affect screening-out due to low signal.

For example, positive biases can make the cloud signal look stronger (fewer cases screened out), while negative biases can

make it look weaker, even resulting in negative radiances (more cases screened out). For MLEV, the consequences of errors

are not as clear as for CO2 slicing/sorting; indeed, both positive and negative biases in the water vapor profile (expressed as30

PWV in the figure) result in negative biases in retrieved cloud height.

4.3 Dependence of cloud height retrievals on resolution

Figure 7 shows the magnitude of the mean biases (solid lines) and the standard deviations (dashed lines) of errors in the

retrieved cloud heights for MLEV (blue) and CO2 slicing/sorting (red) as functions of instrument resolution. Upper panels are
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for low clouds and lower panels are for high clouds. The left panels show means and biases in the absence of imposed error,

and the right panels are for cases that include imposed errors (0.1 RU noise and a temperature bias of -0.1 K). Note that mean

biases are positive for low clouds and negative for high clouds; the figure shows the absolute values of the biases.

For all cases, retrieval errors increase overall as resolution becomes coarser, from 0.1 to 8 cm−1. While MLEV and CO2

slicing/sorting give similar results at a resolution of 0.1 cm−1, errors generally grow larger for MLEV with coarsening reso-5

lution than for CO2 slicing/sorting. For low clouds the standard deviations diverge immediately, at 0.5 or 1 cm−1, while mean

biases diverge at 2 cm−1. For high clouds variability is more complicated: in the absence of imposed errors neither MLEV nor

CO2 slicing/sorting are clearly better than the other, while when the imposed errors are present, retrieval errors grow larger

with coarsening resolution for MLEV.

5 Discussion10

5.1 Context with past studies

Mahesh et al. (2001a) assume a variation of 3% in the ratio of emissivities ε(ν)/ε(ν0) (i.e. error due to the assumption that

emissivity is constant with wavenumber over the spectral region used). In their analysis, this source of uncertainty leads to

uncertainty in retrieved cloud-base pressure of 5 to 13 mb (for a zenith angle of 45 degrees). Converting these to errors in

cloud-base height gives error estimates of 0.03 to 0.11 km for low clouds (bases of 0.1 to 1 km) and 0.14 km for a single high15

cloud at 2.1 km. In this work, we find that for high, thin clouds the variation in ε(ν)/ε(ν0) is closer to 5%, resulting in biases

of about -0.9 km for high clouds (above ∼2 km, for a zenith view). Furthermore, we estimate that errors in retrieved height

due to other sources of model error are ∼ 0.21 ± 0.35 km for low clouds and -0.19 ± 0.41 km for high clouds. Thus this work

expands on the error analysis of Mahesh et al. (2001a) and indicates that retrieval errors for the CO2 slicing model applied to

downwelling radiances are larger than previously predicted. However, errors in actual cases will depend on the specific set of20

clouds sampled.

Figs. 3-5 were plotted to be comparable to Figs. 7, 8, 11 and 14 of Holz et al. (2006), which show similar histograms

for CO2 slicing/sorting, CO2 slicing (without sorting; not included here as a separate category) and MLEV. Note, however,

that Holz et al. (2006) compare cloud-top height retrieved from upwelling (aircraft-based) infrared radiances (nadir view, 0.5

cm−1 instrument resolution) to cloud heights from lidar measurements, whereas we compare cloud heights retrieved from25

simulated downwelling radiances at the surface to known model cloud-base heights. Thus our results are not suited for detailed

comparisons. However, some general observations can be made.

The results of Holz et al. (2006) suggest that CO2 slicing/sorting is more accurate than MLEV for retrievals of optically thin

clouds (τ < 1.0) from measurements of upwelling radiance. This study indicates that, for downwelling radiances, the two are

roughly equivalent, and highly accurate, in the absence of errors, while in the presence of errors accuracy is highly dependent30

on the source of error. As an example, this work shows that humidity biases cause smaller errors for CO2 slicing/sorting

than for MLEV; thus one explanation for the higher accuracy Holz et al. found for CO2 slicing/sorting could be errors in the

humidity profiles they used. Finally, Holz et al. state that retrievals are challenging for clouds below 3 km using upwelling
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radiances. Since low clouds are retrieved most accurately using downwelling radiances, retrievals from surface-based infrared

spectrometers provide an important complementarity.

5.2 Combining MLEV and CO2 slicing/sorting

The fact that MLEV and CO2 slicing/sorting show different susceptibilities to different sources of errors suggests that the

best method is to use them in combination. This is reasonable as they use overlapping, but distinct frequency regions. The5

exact details of how this is done will depend on the relative magnitudes of errors for a given case, which in turn depends on

knowledge of the atmospheric state. But a few details are worth pointing out here.

Both MLEV and CO2 slicing/sorting are fairly accurate for low clouds, even in the presence of errors, with the exception of

large biases in the water vapor profile for MLEV. However, this knowledge is not useful if low clouds cannot be distinguished

from high clouds. High clouds can be identified in several ways. Referring back to Fig. 6, note the dashed line in each panel.10

For all errors shown, only a few points fall in the region to the upper left of this line. This indicates that large positive biases are

generally not found for retrievals of low clouds. Instead, positive biases are generally limited to the value shown by the line.

For example, clouds at 1 km are not retrieved above 3 km. This means that if a high height is retrieved, the true cloud-base is

probably high. Furthermore, cloud heights retrieved for low clouds tend to agree fairly well for MLEV and CO2 slicing, while

retrieved cloud heights for high clouds often disagree. Thus if MLEV and CO2 slicing/sorting disagree, the true cloud-base15

is probably high. This allows accurate categorization of most clouds into low or high; there are few cases where the retrieved

heights are biased low by 2 km or more for both CO2 slicing/sorting and MLEV.

Methods for combining MLEV and CO2 slicing/sorting are worth pursuing but are beyond the scope of this work. They

could include combining them at the algorithmic level: for example, in a Bayesian analysis that determines the optimal solution

based on the intersection of the mean ± 1 standard deviation probabilities for CO2 slicing/sorting and MLEV. Or they could20

be combined post-retrieval by calculating a weighted combination of retrieved cloud heights for the two methods, where the

weights depend on the uncertainty levels of the radiance, knowledge of the atmospheric state, and retrieved heights. Regardless,

how best to combine CO2 slicing/sorting and MLEV will depend on resolution and the magnitudes of sources of error and will

require estimates of how errors are propagated into errors in retrieved cloud heights. The extra computational time taken for

running both CO2 slicing/sorting and MLEV is minimal because the most time-consuming computations are the calculations25

of Bc, tc and Rc for each model layer, and this set of calculations is identical for the two methods (see step 1 for each method

in Sect. 3.2 and Sect. 3.3).

5.3 Effect of resolution on retrieval

For CO2 slicing/sorting in the absence of errors, the mean bias in retrievals for high clouds increases rapidly with resolution

from∼ 0 km at 2 cm−1 to -1 km at 4 cm−1 (refer back to dashed red line in Fig. 7b, but note that the figures shows the absolute30

value of the mean bias). This is primarily due to the assumption that the emissivity is constant. As described previously,

the variation of the emissivity with wavenumber results in a mean bias of -0.93 at a resolution of 0.5 cm−1, but this bias is

removed to a large extent by fitting the emissivity at high-signal points to a best-fit line and using the best-fit line to calculate a
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smoothly varying (linear rather than constant) emissivity. At resolutions coarser than ∼ 2 cm−1, this correction is hindered by

an insufficient number of points, and the bias reappears; note that a bias of -0.93 explains much of the magnitude of the bias

shown for CO2 slicing/sorting in Fig. 7b at 4 and 8 cm−1. A similar increase is evident when errors are imposed (dashed red

line in Fig. 7d), but it occurs at a lower resolution (1 to 2 cm−1) and is superimposed on a large negative bias (∼1.2 km) due

to the imposed errors.5

Because different sources of error affect the CO2 slicing/sorting and MLEV retrievals differently, errors in creating Fig.

7 were chosen so that retrieval errors roughly agree at a resolution of 0.1 cm−1 (Fig. 7 c and d) so that the variation with

coarsening resolution could be examined in a comparable manner. Comparing cases with and without the imposed error, for

low clouds, mean biases are actually reduced when the error is imposed (compare Figs. 7a and c). This occurs because the

negative bias imposed on the temperature profile biases the retrieved cloud heights low; the negative bias in retrieved cloud10

height partially counteracts the positive bias that occurs due to model assumptions. The opposite is true for high clouds:

negative biases from the temperature profile errors exacerbate low-biases due to model assumptions (recall that absolute biases

are plotted; actual biases are positive for low clouds and negative for high clouds). Thus for the example shown in the figure,

retrieval errors are worsened by the imposed errors for high clouds. If a positive bias in temperature were imposed, the bias

would increase positive biases for low clouds and decrease negative biases for high clouds. If both positive and negative15

temperature biases were imposed, retrieval biases would be unchanged.

While imposed errors may sometimes counteract mean biases, they nevertheless increase the spread of errors (indicating that

errors for individual cases are overall higher) as shown by the increases in standard deviation when errors are imposed (solid

lines in right-hand panels of Fig. 7 are generally higher than in left-hand panels). However, note that there is less dependence

on resolution in the presence of errors (solid lines in right panels of Fig. 7 are flatter than in left panels). Thus in the presence of20

errors, there is less benefit to finer resolution. For CO2 slicing/sorting, finer resolution has little advantage except that it allows

the removal of the model-induced low bias in retrieved cloud height due to assuming the emissivity is constant, as described

previously. However, if errors were larger, this advantage would likely disappear as well.

The errors imposed on the retrievals in the right panels are moderate: the noise is only 0.1 RU and the bias in temperature

profiles is only -0.1 K, yet the increase in retrieval errors is fairly large; for CO2 slicing/sorting retrieval errors roughly double.25

However, a few points are worth noting. First, bias errors represent a worst-case scenario; errors that vary in sign with height

will have a smaller effect. Second, the magnitude of the errors that are allowed depends directly on the threshold used for cloud

detection. Here a threshold of 2.2 RU was used, allowing clouds with optical depths as low as 0.25-0.5 to be retrieved. A stricter

threshold would result in greater retrieval accuracy, at a cost of eliminating more thin clouds. In other words, retrieval accuracy

is directly dependent on cloud signal, and will be greater for thicker clouds. This is demonstrated in Fig. 8, where the x-axis30

in panels b and c is cloud signal, computed as the root-mean-square difference between cloudy and clear-sky radiance at the

wavenumbers used in the retrieval. For this case (resolution of 4 cm−1, with imposed noise and temperature bias), the absolute

cloud height error decreases from a maximum of 3.1 km for the lowest cloud signal, to 0.2 km for the highest signal (panel c).

Cloud-height retrieval accuracy also decreases with cloud height; panel a shows that the absolute value of the error increases
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with cloud height. This is partly because higher clouds tend to have lower signal, but also occurs independent of cloud signal.

For example, for a cloud signal of ∼3 RU retrieval errors vary from 0 to 3.5 km (colors in panel a).

5.4 Error and instrument characteristics

For cloud retrievals in the polar regions using an autonomous infrared spectrometer, noise and radiation bias represent instru-

ment characteristics, while errors in the atmospheric profiles will depend on the accuracy of knowledge of the atmospheric5

state. In remote locations, this will in turn depend on the accuracy of reanalysis data, such as from the European Centre for

Medium-Range Forecasting (ECMWF) Interim reanalysis dataset (ERA-Interim; Dee et al., 2011).

Wesslen et al. (2014) measured temperature and humidity profiles and compared them to ERA-Interim. These profiles were

not assimilated into the reanalyses, and the location of the measurements was distant from radiosonde assimilation sources;

thus, we assume their estimated errors in temperature profiles are similar to what an autonomous spectrometer would experience10

in remote locations, except that the temperature at the surface will be measured and thus known very accurately. Thus we

assume errors of 0 K at the surface increasing to 0.5 K at 0.1 km. For water vapor, they find mean errors to be typically positive

and below 2% for the first 3 km, after which they increase to 5 to 10% from 4 to 8 km. For this work we assume a relative bias

of 3% throughout the atmosphere. Again, we assume the relative humidity will be measured to high accuracy at the surface

and correct the surface error to 0%. This represents an underestimate of error in the upper atmosphere; however, most of the15

water vapor is in the lower atmosphere, where this represents an overestimate of error. CO2 errors are expected to be on the

order of 0.5%, based on the work of Alkhaled et al. (2008). This source of error is expected to be quite small.

Fig. 7 (shown previously) can be used as a guide to choose the ideal instrument resolution for an autonomous infrared

spectrometer. (It is important to note that Fig. 7c and d are based on only one set of imposed errors (0.1 RU noise and 0.1

K temperature bias), and thus results may be different for different imposed errors.) In the presence of these errors, retrieval20

accuracy is roughly equivalent at 0.1 and 0.5 cm−1. For MLEV, large increases begin at about 1 cm−1. For CO2 slicing/sorting,

in contrast, errors remain flat up to resolutions as coarse as 4 cm−1, except for biases in high clouds, which are about 50%

higher at 4 cm−1. This suggests that a resolution of 2 cm−1 is adequate for CO2 slicing/sorting. The decision of the exact

resolution to use will depend on the capability of achieving the desired noise level, since throughput, and thus the signal-to-

noise, increase as resolution becomes coarser.25

Table 1 shows error estimates calculated for a resolution of 0.5 cm−1 for a variety of sources of error, for low clouds. Table

2 is the same, but for high clouds. After screening out cases with low cloud signal (see the columns indicated with Omit.),

errors in retrieved cloud height (retrieved - true cloud-base height) are calculated for each remaining case. The mean error,

representing the mean bias in retrieved cloud heights, and the standard deviation are given in the table. The effect of model

error, which is present even when no errors are imposed, is shown in the top row. Because model error is present for all30

retrievals, the value in the table for each source of error is an overestimate. To determine the error in retrieved height due to a

given source of error, the effect of model error needs to be removed. For mean biases, it can simply be subtracted out, while for

standard deviations it should be removed in quadrature. As shown in the table, the effect of the varying temperature error based

on Wesslen et al. (2014) was found to be roughly equivalent to the effect of a positive temperature bias of 0.2 K. For water
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vapor, biases of ± 3% at all heights were assumed to be roughly equivalent to the errors found by Wesslen et al. (2014) for

ERA-Interim. For comparison, water vapor errors of 10% were also calculated. CO2 errors of ± 0.5% were found to produce

negligible errors; that is, errors were approximately the same as for model error only. As the table shows, for low clouds, mean

biases are almost always positive and are ≤ 0.74 km for all sources of error tested, illustrating the accuracy with which low

clouds can be retrieved. For high clouds, the situation is quite different; standard deviations can be 2 km or more for a single5

source of error.

The table also gives the number of cases omitted for each source of error. Cases were omitted if the root-mean-square

radiance difference for cloudy - clear sky conditions (Robs−Rclr) was greater than a chosen threshold (2.2 RU). The threshold

was chosen that eliminated all clouds with optical depths less than 0.25 and most with optical depths less than 0.5 in the

absence of imposed error (referring back to Fig. 2 a and b). This typically eliminated less than about 20 low-cloud cases. For10

high clouds, about half (24-36 out of 67) of the clouds were screened out. High clouds emit less because they are colder and

typically thinner than low clouds; furthermore they have a longer transmission path length through the atmosphere. Thus it

seems likely that applying such a threshold to real measurements will also screen out a greater proportion of high clouds (this

was true in our dataset despite the fact there is no statistical difference between the optical depths of high and low clouds).

More clouds are screened out for errors that reduce the cloudy-sky radiance or increase the clear-sky radiance. Tuning the15

threshold to a higher value will remove more low-signal cases, particularly high clouds.

The final row of each table gives an estimate of combined sources of error. This included noise (0.1 RU), radiation bias (0.1

RU), temperature biases of± 0.2 K, and water vapor biases of± 3%. To calculate the combined errors, first the effect of model

error was removed from all error estimates save one (so that model error wouldn’t be included multiple times) for both mean

biases in retrievals and standard deviations. Next, errors for positive and negative biases were averaged. Finally, retrieval biases20

were summed and standard deviations were added in quadrature. For these error levels, for high clouds and a resolution of 0.5

cm−1, mean biases are better than ∼2.5 km and standard deviations are less than 2 km.

If these instrument characteristics are difficult to achieve, it is also possible to screen out more thin cloud cases by increasing

the cloud-signal threshold. The threshold of 2.2 RU removed almost half of the clouds with bases of 2 km and above; a larger

threshold would exclude even more. Higher instrumental errors are tolerable for low clouds; for example noise of 0.8 RU and25

bias of 0.4 RU errors correspond to errors of∼0.3± km for low clouds. Furthermore, as discussed previously, accuracy can be

improved and most high clouds erroneously identified as low can be correctly identified by combining the CO2 slicing/sorting

and MLEV methods.

The statistics of cloud base heights used in this work are similar to those measured in the Arctic (see Cox et al., 2016,

and references therein), with 79% of the clouds below 2 km. Low clouds are also common in the Antarctic (Bromwich et al.,30

2012; Mahesh et al., 2005). Thus a surface-based spectrometer would be of the greatest benefit for retrieving the heights of low

clouds, which are common in the polar regions.
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6 Conclusions

Two established methods for retrieving cloud height from upwelling infrared radiances are modified for retrievals from down-

welling infrared radiances: the Minimum Local Emissivity Variance (MLEV) and the CO2 slicing/sorting method. Modifica-

tions to CO2 slicing/sorting make use of the method of Mahesh et al. (2001a) for CO2 slicing of downwelling radiances. For

CO2 slicing/sorting, it was determined that a low bias (approximately -0.9 km) is present in retrievals of clouds with bases of5

2 km or higher; a correction to this bias is presented that assumes a smooth, rather than constant emissivity at wavenumbers

selected by CO2 sorting (∼720 to 811 cm−1). However, it is found that this correction can only be applied when other errors

are low.

Working towards the goal of assessing the feasibility of cloud height retrievals from an infrared spectrometer designed to be

used in remote polar locations, and the instrumental considerations (noise and bias in measured radiances) permitting useful10

retrievals, errors in cloud-height retrievals using the two methods are assessed for simulated radiance observations. Simulated

radiances include single-layer, mixed-phase clouds for a variety cloud and atmospheric conditions characteristic of the Arctic,

at resolutions of 0.1 to 8 cm−1. Retrieval errors are estimated for instrumental sources of error and errors in the atmospheric

state that are likely to be experienced in measurements.

In the absence of imposed errors, cloud height retrievals from simulated spectra using CO2 slicing/sorting and MLEV are15

found to have roughly equivalent, high accuracies at resolutions of 0.5 cm−1 or finer. For example, at 0.5 cm−1, mean biases

are found to be∼ 0.2 km for low clouds (bases below 2 km,∼143 cases) and -0.2 km for high clouds (bases≥ 2 km, 39 cases).

As resolution becomes coarser, errors increase. For low clouds, CO2 slicing/sorting is found to be more accurate than MLEV

at resolutions coarser than 0.5 cm−1. For high clouds, the situation is more complicated: CO2 slicing/sorting is more accurate

from about 1 to 2.5 cm−1, and MLEV is more accurate from 2.5 to 8 cm−1. However, in the presence of errors, the dependence20

on resolution is weakened. Furthermore, the two methods are found to have differing sensitivities to different sources of error:

CO2 slicing/sorting is more sensitive to bias in observed radiation and errors in the temperature profile, while MLEV is more

sensitive to noise and humidity errors. This complementarity suggests that an approach that combines the two methods is ideal.

In particular (for expected error magnitudes), it can be assumed that the cloud base is high if either method retrieves a high

cloud, or if the two methods disagree widely. This can be extremely helpful to improve or screen out cases where one method25

fails completely, e.g. when a near-surface height is retrieved for a cloud base above 2 km for only one method.

Retrieval accuracy is found to decrease with cloud signal, where cloud signal is defined to be the rms difference, at the

selected wavenumbers, between observed and clear-sky radiances. A cloud-signal threshold of 2.2 RU is found to screen out

all cases used here with clouds having optical depths below 0.25 and many clouds with optical depths below 0.5. Proportionally

more high clouds are screened out than low clouds because high clouds typically have lower signal (because they emit less, due30

to lower cloud temperature, and less cloud emission reaches the surface). However, retrievals for high clouds are also found

to be less accurate independent of cloud signal. Indeed, errors have a small effect on retrievals of low clouds but a large effect

on high clouds. For real clouds, high clouds are also typically thinner optically than low clouds, thus applying the threshold to

real observations is expected to remove even more high-cloud cases, proportionally to low-cloud cases.
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Expected errors in the atmospheric state indicate that a resolution of 0.5 cm−1, instrument noise level of 0.1 RU and bias

of 0.1 RU would permit retrievals of high clouds to an accuracy of -2 ± 2 km for both methods. Accuracy for low clouds

would be ∼ 0.2 ± 0.5 km. If these instrument characteristics are not feasible, retrievals may be performed for a smaller subset

of thicker clouds by increasing the cloud-signal threshold, which would exclude a large portion of high clouds. Furthermore,

higher instrumental errors are tolerable for low clouds; for example noise of 0.8 RU and bias of 0.4 RU errors correspond to5

errors of about ∼ 0.3 ± km for low clouds. For a fixed noise level, the ideal instrument resolution is 0.5 cm−1 for MLEV

and 0.5 to 2 cm−1 for CO2 slicing/sorting. However, there are likely trade-offs between noise and instrument resolution. The

detailed analysis presented here can help optimize instrument characteristics.

The sensitivity demonstrated here for a surface-based infrared spectrometer to low clouds, which are most common in polar

regions, is an important complement to satellite-based measurements, particularly infrared instruments, for which low-level10

cloud retrievals are challenging.

7 Data Availability

The dataset of perfect resolution downwelling radiance spectra characteristic of the Arctic (Cox et al., 2015) is available

on the Arctic Observing Network (AON) Arctic data repository (at https://www.aoncadis.org/dataset/AAIRO_spectra.html;

doi:10.5065/D61J97TT) and is described by Cox et al. (2016). Computer codes for creating cloudy spectra (runDisort_mat and15

runDisort_py), which use DISORT (Stamnes et al., 1988), are available at https://github.com/prowe12; see also Rowe et al.

(2013).
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Figure 1. Distributions of macrophysical properties for 222 simulated clouds. a) cloud base height (black) and cloud top height (green), b)

physical thickness, and c) cloud temperature. The vertical lines in (c) represent the physical limits imposed on the cloud phase; the lower

limit is for liquid, while the upper limit is for ice.
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slicing” refers to the CO2 slicing/sorting method. The CO2 slicing/sorting method and MLEV methods are described in the text.
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high clouds have bases ≥ 2 km.
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Figure 4. Errors in cloud heights retrieved from infrared downwelling radiances (at an instrument resolution of 0.5 cm−1) for single-layer

model clouds with positive biases in the temperature profile used for the retrieval (0.2 K at all heights) for a) low clouds (cloud bases < 2

km) retrieved using CO2 slicing/sorting, b) low clouds retrieved using MLEV, c) High clouds (defined to have bases≥ 2 km) retrieved using

CO2 slicing/sorting, and d) high clouds retrieved using MLEV.
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Figure 5. Errors in cloud heights retrieved from infrared downwelling radiances (at an instrument resolution of 0.5 cm−1) for single-layer

model clouds with negative biases imposed on the water vapor profile used in the retrieval (of 10% at all heights) for a) low clouds (cloud

bases < 2 km) retrieved using CO2 slicing/sorting, b) low clouds retrieved using MLEV, and c) high clouds (defined to have bases ≥ 2 km)

retrieved using CO2 slicing/sorting, and d) high clouds retrieved using MLEV.
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Figure 6. Retrieved versus true cloud base for cases with the errors shown in the titles for the CO2 slicing/sorting (CO2) and MLEV methods

(at a resolution of 0.5 cm−1). The dashed lines indicate the upper left region where points rarely lie.
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Figure 7. Absolute value of mean error in retrieved cloud heights and standard deviation in retrieved cloud heights as a function of instrument

resolution for a) low clouds (cloud bases below 2 km) with no imposed error, b) high clouds (bases of 2 km and above) with no imposed

error, c) low clouds with imposed error, and d) high clouds with imposed error. The errors imposed are 0.1 mW / (m2 sr cm−1) noise in the

cloudy-sky radiance and a bias of -0.1 K in the temperature profile used for the retrieval. One outlier (with a cloud base at 0.3 km and a

retrieved cloud base of 8 km) was removed from the set of retrievals at 0.1 cm−1 with imposed error.
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Figure 8. (a) Absolute value of binned mean error in retrieved cloud heights (x-axis) as a function of cloud base height (y-axis). (b) Absolute

value of cloud height error (given in colorbar) as a function of cloud base height and cloud signal (root-mean-square of cloudy - clear sky

radiance). A small random number is added to each cloud base height in this panel to make them more easily distinguishable. (c) Absolute

value of binned mean error as a function of cloud signal. Cloud heights were retrieved using CO2 slicing/sorting from downwelling radiances

at a resolution of 4 cm−1. Noise of 0.1 mW/(m2 sr cm−1) was added to the cloudy-sky radiance and a bias of -0.1 K was added to the

temperature profile used in the retrieval.

30

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-49, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 7 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



Table 1. Errors in retrieved cloud height (retrieved height - true cloud base) for clouds with bases below 2 km using the CO2 slicing/sorting

and MLEV retrieval methods at a resolution of 0.5 cm−1. Errors were determined by imposing a source of error (Source) on either the

cloudy-sky radiance: noise or radiation bias (Bias) or on the simulated radiances used in the retrieval: temperature, humidity or CO2 profiles

used in the retrieval. For profiles, biases were imposed at all heights, except for variable temperature errors (var.). The mean error (Mean)

and the standard deviation of the errors in retrieved cloud height (STD) are given. There were 165 cases, of which some were omitted based

on screening (Omit.). The final row shows an estimate of the combined error for realistic sources of errors, calculated as described in the text.

CO2 slicing/sorting MLEV

Source Value Mean STD Omit. Mean STD Omit.

(km) (km) (#) (km) (km) (#)

None - 0.21 0.35 21 0.15 0.45 22

Noise 0.2 0.25 0.42 22 0.13 0.45 21

Bias (RU) 0.2 0.05 0.40 19 0.09 0.49 19

Bias (RU) -0.2 0.31 0.34 22 0.36 0.40 22

Temp. (K) 0.2 0.34 0.43 22 0.26 0.49 22

Temp. (K) -0.2 0.05 0.38 19 0.05 0.48 19

Temp. (K) var. 0.27 0.40 21 0.25 0.46 21

W.V. (%) 3 0.23 0.33 21 0.28 0.55 21

W.V. (%) 3 0.21 0.36 19 0.04 0.52 19

W.V. (%) 10 0.21 0.35 25 0.27 0.64 26

W.V. (%) 10 0.17 0.33 19 -0.06 0.74 19

CO2 (%) 0.5 0.25 0.34 21 0.17 0.47 21

CO2 (%) 0.5 0.20 0.37 18 0.15 0.45 18

Total - 0.2 0.5 - 0.2 0.6 -
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Table 2. Errors in retrieved cloud height (retrieved height - true cloud base) for clouds with bases ≥ 2 km using the CO2 slicing/sorting

and MLEV retrieval methods at a resolution of 0.5 cm−1. Errors were determined by imposing a source of error (Source) on either the

cloudy-sky radiance: noise or radiation bias (Bias) or on the simulated radiances used in the retrieval: temperature, humidity or CO2 profiles

used in the retrieval. For profiles, biases were imposed at all heights, except for variable temperature errors (var.). The mean error (Mean)

and the standard deviation of the errors in retrieved cloud height (STD) are given. There were 67 cases, of which some were omitted based

on screening (Omit.). The final row shows an estimate of the combined error for realistic sources of errors, calculated as described in the text.

CO2 slicing/sorting MLEV

Source Value Mean STD Omit. Mean STD Omit.

(km) (km) (#) (km) (km) (#)

None - -0.19 0.41 28 -0.07 0.24 28

Noise 0.2 -0.25 1.30 27 -1.72 1.45 28

Bias (RU) 0.2 -1.47 0.99 27 -0.91 0.57 27

Bias (RU) -0.2 0.49 1.98 29 0.13 0.64 27

Temp. (K) 0.2 0.65 2.35 29 0.18 0.98 29

Temp. (K) -0.2 -1.67 1.15 27 -1.08 0.64 27

Temp. (K) var. 0.51 2.38 28 -0.39 0.57 28

W.V. (%) 3 0.02 0.46 29 -0.64 1.44 29

W.V. (%) 3 -0.42 0.72 27 -1.34 1.12 27

W.V. (%) 10 0.51 0.84 29 -2.90 1.81 29

W.V. (%) 10 -1.09 0.90 24 -3.23 1.74 24

CO2 (%) 0.5 0.06 0.49 29 0.15 0.25 36

CO2 (%) 0.5 0.44 0.52 27 -0.30 0.37 27

Total - -1.7 2.0 - -2.4 1.7 -
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